"你怎么还有脸来找我?"我放肆地嘲笑他了。他应该明白我的意思。自己说过的话,写过的信还会忘记吗? 就是开始出现了这些感觉器官

时间:2019-09-26 09:15 来源:秦楚网 作者:和谐社会

  那么还是给大家介绍一下这个什么是脊椎动物?什么是四足动物?大家在中学里头可能很多已经接触到这个概念。这个是现生的这种脊椎动物演化的一个谱系图。那么脊椎动物有两个最主要的特征,你怎么还第一个特征就是脊椎动物已经具有了发达的神经系统,你怎么还它分化出了具有复杂结构的脑,那么头部呢,就是开始出现了这些感觉器官。感觉器官再加上保护它们的头骨,就构成了明显的这些头部。你看所有的脊椎动物都有一个头,所以脊椎动物又称为叫有头类,这个是包括从最早的这种鱼到后面的这种两栖类、爬行类、包括我们人都是有头的。那么与有头的相对比呢,我们就是叫做无头类。那么这个就是看起来像鱼,实际上叫文昌鱼,但是它没有真正的头部,所以它还不算脊椎动物。它进入脊索动物的这个范畴里头,叫做无头类。

“地心说”这种学说在西方一直持续了一千多年,脸来找我我一直到15、脸来找我我16世纪的时候,事情才开始发生变化。当时波兰的天文学家哥白尼,他根据一些天文观测的结果,就发现“地心说”有很多缺陷。他认为如果把太阳放在宇宙的中心,那么这个情况,就要比“地心说”更能够解释这个观测事实。于是哥白尼就在他临去世以前,出版了他着名的《天体运行论》。这幅图就是哥白尼在《天体运行论》里边所提出的“日心说”代表的一幅图。我想提醒大家注意一个事实,就是在哥白尼的书出版了以后很长时间,并没有引起公众的重视。就是大家都没有重视他的学说,“地心说”还是处在一种主导的地位,而且“地心说”还被教会引进了它的教义。教会就认为,上帝是在地球上,也就是在宇宙的中心创造了这个世界,所以说“地心说”实际上是和教会的教义联系在一起的。一直到17世纪的时候,望远镜发明了。这时候意大利科学家伽利略,就亲手制作了几架小的望远镜,他马上用几架小的望远镜观测天体,然后他就完成了非常重要的发现。伽利略用望远镜观测天体的时候,首先他就观测了木星,他就发现木星周围有几颗非常亮的亮点,而且他发现这个亮点的位置还在不断地移动。于是他马上意识到,这几亮点是木星的卫星。然后伽利略还发现了金星,在望远镜里不是一个完整的圆面,而是一个像我们的月亮一样,会出现圆缺的现象。那么这说明什么呢?说明第一,金星它自身并不发光;第二,说明金星在围绕着太阳旋转。伽利略在发现了这两个重要的观测事实以后,马上就得到一个结论,就认为“日心说”,哥白尼的学说是正确的。这样对于教会来说,它们感到受到了非常重大的威胁。因为伽利略他用观测事实来说明“日心说”是正确的,否定“地心说”,这样也就等于否定了教会的教义。于是教会就认为再也不能漠视哥白尼和伽利略他们的学说了,于是就有了教会对伽利略的审判。这个审判一直到上个世纪,教会正式为伽利略进行了平反。那么这个错误的判决维持了好几百年,这件事在科学史上是一件非常应该引起大家思考的事情,为什么呢?就是任何一种学说,如果没有观测事实,或者试验证据的支持,它就不能被人们所接受。正是因为伽利略用望远镜发现了木星的卫星,发现了金星的圆缺现象,所以他用最有利的证据推翻了“地心说”,那么教会才感到,它们的教义被否定了,所以来审判伽利略。所以任何一种科学的理论,一定要有一种观测或者试验的证据来支持它,这种观测或者试验的证据是最有力的。在“日心说”确立了它科学史上的地位以后,放肆地嘲笑在英国牛顿提出了万有引力的学说。他认为任何两个大质量的物体之间,放肆地嘲笑或者说任何两个质量不为零的物体之间都存在着万有引力。对于天体来说,它们的质量是非常大的。所以它们之间的万有引力也是非常明显的。所以牛顿就认为任何两个天体之间,存在着万有引力。那么这将直接造成质量比较小的天体围绕质量大的天体旋转。那么他用这个理论来解释所有的这些天体,它们的运行情况,他发现天体的运行用万有引力来解释,可以解释得非常好,那些轨道甚至可以直接用数学公式来计算出来。于是在万有引力这个理论的基础上,牛顿就提出了他的稳恒态宇宙的概念。他就认为日、月、天体都是在不断地运动之中,维系它们运动规律的就是万有引力的定律。基于这种认识,牛顿就认为宇宙是没有边界的,宇宙是无限的,这样就回到了时间和空间无限这样一种观念。时间是永远在均匀地流失,空间自然地向四面八方伸展,时间和空间的存在是和物质没有关系的。宇宙自古以来就处在一种整体不变的这样一种状态,这样无限和永恒的宇宙这样一种观念就建立起来了,这就是所谓稳恒态宇宙。在很长一段时间里,牛顿的稳恒态宇宙就处在新的主导地位。可是稳恒态宇宙的命运还不如 “地心说”的命运,稳恒态宇宙也就存在了几百年,然后就被新的理论所替代了。

  

天文学家在研究银河系结构的时候发现,他了他应该我们的太阳并不处在银河系的中心,他了他应该而是处在银河系的边缘上。太阳距离银河系中心大约是三万光年,也就说我们地球所在的太阳系距离银河系的中心是三万光年。望远镜发明了以后,人们在观测天体的时候就发现了,天上这些能够看到的天体并不只是一些恒星,还有一些看起来是有扩展,有一个平面结构的对象。我们知道,恒星多数看起来它是没有结构的,就是一个点光源。即使是在一些大的望远镜里边,我们看到的绝大多数恒星也是一些点光源,只不过在大望远镜里头它的亮度会增加。那么还有一些天体就不是这样,它是一些带扩展的,就是带有某种形状的光源。其中一个最亮的、最有名的就是在北天就可以看到的仙女座大星系。当初在历史上它曾经被叫“仙女座星云”,它在历史上有过另外一个名称。在上个世纪初的时候,在美国曾经因为这个“仙女座星云”到底是银河系内的天体,还是银河系之外的天体,发生过一场非常有名的争论。当时有两个非常资深的天文学家在进行这一场争论。其中一位认为“仙女座星云”是银河系之外的天体,另一位认为“仙女座星云”是银河系内部的天体。主张“仙女座星云”是银河系之外天体这位科学家名叫柯惕斯,他就是来自美国的里克天文台。当时他为什么主张“仙女座星云”是银河系之外的天体呢?他研究“仙女座星云”爆发的超新星。他假定所有的超新星在爆发时,它的亮度都是差不多,就是都差不多一样亮。那么他就观测到这个行星的亮度以后,他发现在“仙女座星云”里边,爆发的超新星的亮度非常地暗。如果假定所有的超新星爆发的亮度都差不多的话,而在“仙女座星云”里边这个超新星的亮度非常地暗,这说明了什么呢?根据光源反平方定律,就说明它与我们之间的距离是非常遥远的。那么他根据反平方定律还大致算出了“仙女座星云”的距离大概是五十万光年左右,当时他是得到了这样一个结论。那么当时(我们)也知道了,我们银河系的直径大概是16万光年。那么很清楚,就是“仙女座星云”它不是我们银河系内部的天体。但是另一位天文学家也举出了另外一些证据,他认为是正确的证据,认为“仙女座星云”是银河系内部的天体。在当时由于双方的证据都不够强有力,当时这场争论就不了了之了,这是在上个世纪初进行的一场争论。可是也就在差不多同时,明白我的意一位年轻的天文学家在威尔逊天文台进行了天文观测,明白我的意他的观测使这场争论最后有了一个非常明确地结果。这个人就是在上个世纪里边为天文学做出重大贡献的哈勃。哈勃就研究了在“仙女座星云”里边发现了一些“造父变星”,那么“造父变星”是一类非常特别的变星。我们知道,天上的行星有一些它的亮度是在不断地发生变化。有一些这些变化是有规律的、有周期性的。那么“造父变星”就是这一类有规律的周期性变星。哈勃在观测了“仙女座星云”里的“造父变星”以后,他就发现在“仙女座星云”里的“造父变星”,它的光变周期是非常长的,但是它的亮度又非常低。这样哈勃就意识到,它本来应该很亮,它为什么亮度又非常低呢?那么只能用光源亮度的反平方定律来解释。那么在这个工作的基础上,哈勃就进一步的通过计算,就确定了“仙女座星云”的距离。他当时计算的结果大概是七十万光年的样子。我们刚才说到银河系的直径大约是16万光年,所以“仙女座星云”它就不可能是银河系内部的天体。这样刚才我们说到上个世纪初的那一场非常着名的争论,就有了一个结果。在确认了“仙女座星云”的距离以后,思自己说过人们开始就考虑这个“仙女座星云”它到底是一个什么样的天体?后来就发现这个“仙女座星云”它实际上是和我们自身所在的银河系是差不多一样的非常巨大的恒星系统。这幅图就是银河系的一幅图。我们现在发现的“仙女座星云”也差不多是同样巨大的恒星系统。现在我们知道,思自己说过“仙女座星云”其中大概有两千亿到三千亿颗恒星,比我们所在的银河系还要大一些。我们所在的银河系大概是一千亿到两千亿颗恒星,这样就使我们人类认识到的宇宙在认识上有一个非常重大的飞跃。因为在哈勃工作以前,我们认为银河系就是整个宇宙。那么在哈勃发现了“仙女座星云”不是银河系内的天体,而且后来又进一步发现,其中大概有两千亿到三千亿颗恒星,这样我们人类所认识到的宇宙,就一下子扩大了很多倍。在“仙女座星云”被确认为是河外星系之后,当然从那以后,我们就管它叫“仙女座星系”。人类又陆续地发现了许许多多的和它一样的银河系之外的星系。到现在为止,这样所谓的河外星系大概已经估计,应该有几百亿个像我们太阳系所在的银河系这样巨大的恒星系统,我们想我们的宇宙有多大。那么现在观测到的最远的河外星系,它到我们之间的距离大概超过了一百亿光年,也就是说我们所在的宇宙,它的大小最少就是不小于一百亿光年。比较准确的说法是一百四十亿光年。到现在为止,我们还没有看到任何宇宙有有边界的迹象。我们知道,我们的望远镜越造越大,我们观测技术越来越发展,那么我们看到的宇宙也就越来越远,我们能看到的距离也就越来越远。但是到现在为止,并没有发现任何宇宙有边界的迹象,我们能不能说宇宙是无限的呢?我想在科学上,我们还不能这么说。因为在科学上,一切应该是以观测或者试验的证据为基础,也就是说你在望远镜里看到了,你才能说,我在什么地方看到了一个东西,如果望远镜里还没有看到,那么科学家只能老老实实地承认,那个地方我还没有观测到任何东西,我还没有观测到那么远的地方。所以说宇宙在时间上和空间上是无限的。这个说法更多的是一个哲学上的命题,而不是一个科学上的命题。在科学上就是我们(通过)望远镜观测到了,比如说我观测到了一百四十亿光年以外的河外星系,那么科学家就应该说在一百四十亿光年这么大的范围里头,我还没有看到宇宙有任何有边界的迹象,这句话应该是符合科学的。

  

那么河外星系的确认应该是人类在认识宇宙的过程中非常重大的进展,话,写过的信还会忘可以说是划时代的。我们现在对宇宙的了解就比以前,话,写过的信还会忘就是说我们认识到的宇宙比以前是大得多了。有很多天文学家在河外星系被确认前后这一段时间,就开始研究它们的光谱。我们知道,就是从一个天体来的光我们接收到了以后,通过一些分光元件,比如大家可能知道,一些棱镜或者光栅,就能把它分解成一道一道的光谱,这些光谱里实际上携带了很多非常重要的信息。我们了解地球以外的天体,更多的是通过分析它们的光谱才得到。那么这幅图就展示了几个河外星系的光谱,这里边就是我们获得的一个非常重要的信息是什么呢?就是关于河外星系光谱的红移的问题,在这幅图里集中的显示了非常重要的发现。最上面那个是一个河外星系,它看起来比较大,比较亮,它离我们的距离比较近。那么最下边那个看起来很小、很暗,距离我们非常远的一个河外星系。那么右边这几幅图就是它们的光谱。大家注意,它们的光谱里边有两条黑色的线,就是所谓吸收线,大家看起来那儿像是一个缺口。大家注意这两条吸收线的位置,就是距离我们比较近的河外星系,在它的光谱里边,这两条吸收线比较靠左边,那么在距离我们最远的河外星系,它的光谱里边这两条吸收线就移到了最右边,最右边实际是光谱的红端,就是说距离我们越远的星系,它的谱线就越向红端移动。就是说如果一个光源在远离我们运动的话,那么它所发出来光的光谱,其中的谱线就要向红端移动。而且运动速度越快,向红端移动的范围就越大,这就是所谓谱线的红移。那么这个事实是非常重要的,你怎么还对于我们现在对宇宙的认识是非常重要的,你怎么还这说明了什么呢?就是几乎所有的河外星系它们的光谱谱线都发生了红移。那么越远的星系,它的红移量就越大,这说明了两个问题,第一,所有的河外星系都在远离我们运动;第二,距离我们越远的河外星系,它远离我们运动的速度就越快,或者说是退行的速度越快。还是哈勃,哈勃继续研究了这个非常重要的事实,当然还有一些许许多多其他的天文学家,也进行了类似的工作。后来哈勃他们就发现了这条非常重要的规律。那么哈勃还建立起一个公式,所谓哈勃定律。它就是说越远的河外星系,它的红移量就越大,就说明了它相对于我们退行的速度就越快。

  

大家注意,脸来找我我这是一个观测事实,脸来找我我是一个试验事实,不是哪个理论学家提出来的。而且谁去观测,都能观测到这个河外星系谱线的红移,那么这一点肯定会导致一个新的科学的诞生,它导致了什么新的科学理论呢?所谓宇宙膨胀这样一个学说,就是我们的宇宙现在正处在一个不停地膨胀之中。因为星系是宇宙中物质的一种主要的表现形态,它有宇宙岛之称。那么所有的星系都在远离我们运动,这样就直接导致了宇宙膨胀说的建立。这幅图就展示了在哈勃太空望远镜下我们所发现的众多的河外星系。大家看,其中一些椭圆的物体都是河外星系,在这样一个非常小的天区里边就有如此之多的河外星系。

爱因斯坦在上个世纪初的时候,放肆地嘲笑先后发表了狭义相对论和广义相对论。大家知道,放肆地嘲笑狭义相对论,它的特点是把时间、空间和物体的质量和这个物体的运动联系起来。在爱因斯坦之前,时间和空间,质量这三个重要的物理量和物体的运动状态是无关的,那么在狭义相对论里边这几个因素,这几个重要的物理参量就联系到一起了,尤其是当物体的运动接近光速的时候。那么时间、空间和质量的变化就变得绝对不可以忽略,这是狭义相对论的情况。后来爱因斯坦又发表了广义相对论。那么广义相对论说是的什么呢?是说在一个大质量物体的周围,它的时间和空间都要发生弯曲,这个时间和空间发生弯曲,这件事儿怎么理解呢?我举一个例子,就是说在一个时间和空间发生明显弯曲了的这样一个空间里,连光线都要发生弯曲。我们知道,这光线在我们的经验里,永远是沿着直线传播的。大家可能都玩过那个激光手电,打一束激光出去,它的光传播轨迹绝对的是一条直线,这是我们的生活经验告诉我们。那么广义相对论就是说,在一个弯曲的时空里面,这个光线也要发生弯曲。大家想,如果在一个时空里面,连光线都发生弯曲了,那么在这个时空里面就没有什么东西是直的了,这是一个光线的例子。爱因斯坦这个广义相对论发表以后呢,这个理论就听起来就很玄,当时据说在世界上没有几个人能读得懂这个广义相对论,就是几乎没有人能接受这种理论。后来爱因斯坦就提出了一种办法,就是提出了一种有可能检验广义相对论是否正确的一个办法,这是一个什么办法呢?就是在日全食的时候有可能做的一个试验。那么在日全食的时候,天空黑暗下来以后,我们就有可能观察到太阳后边恒星的位置。根据广义相对论,太阳是一个大质量的天体,那么在它周围,它的时空应该发生弯曲。如果这个恒星的光在经过太阳附近的时候发生了弯曲,那么我们看起来,这个恒星的位置就会发生一点点移动。因为我们的经验总是告诉我们,这光从哪儿来,那么光源就在哪个位置上,这是我们人类的经验告诉我们。但是如果这个光线发生弯曲了,我们就有可能对这个光源的位置发生误解。这就如同你把一根筷子插到盛着一碗水中,你会觉得筷子是弯了,那么这时候,因为光线在通过空气和水表面的时候是发生折射了,这也是一种光的弯曲。那么这样,我们对物体真实位置的判断就会发生一个错觉。他了他应该主讲内容

提起火山,明白我的意大家都很熟悉,明白我的意那就像地壳在爆炸,大地在轰鸣,它会给人类带来一些灾难,同时也可以给社会创造许多的财富。什么是火山?火山就是地下的岩浆喷到地表以后,有的喷到高空再落下来,有的从地面流出来,在喷出口附近,或者在它流动的渠道,冷凝后形成各种形态的堆积物。所以谈到火山,它总是跟岩浆有着密切关系。火山有各种形态,各种喷发方式,有活火山,有死火山,介于活火山和死火山之间,还有叫休眠火山的。另外还有一个泥火山,思自己说过最着名的泥火山是美国的黄石公园。 地球上,思自己说过不光在陆地上,在海洋里都有火山, 在其他星球上也有火山。那么我们中国有没有火山,有哪些火山?中国由于近五十年来,几乎没有火山喷发,所以很多人感觉中国好像没有火山似的,其实中国在历史上也是个多火山的国家,特别在东部地区。中国有没有活火山? 根据现在研究的情况,至少还有十来处火山是活火山。大家会问,为什么地球上会有这么多火山喷发?这是一个很大的科学问题, 现在还有些问题没有搞清楚。但是经过多年的研究,很重要一点就是由于板块运动造成的。地球上分了很多的板块,板块之间互相运动和互相作用,一个板块插到另一个板块下面,就在俯冲的地方温度增高, 把地壳下面的东西熔融了,以后随着压力和温度的增高,慢慢地这个岩浆就往上升,喷出地表。讲了这么多的火山,火山到底有什么用处和什么灾害?这是很重要的。

我认为,话,写过的信还会忘它给人类社会造成的好处大于它的害处,话,写过的信还会忘它的好处,第一个是它可以给人类创造一些土地资源,除了土地资源,就是矿产资源,所以火山喷出来的东西几乎都有用。还有就是很多的矿产跟火山喷发有关系,大家要是比较感兴趣的就是宝石了,有些宝石就是火山喷发出来的;再说一说火山灾害。世界上有十大自然灾害,其中就有火山,火山好像排在第六位,有记录的世界上最大的火山灾害是印度尼西亚的坦博拉火山喷发,这一次火山喷发使得九万二千人死亡。所以火山喷发造成的人员伤亡和财产损失是很严重的。 最后想谈一下火山怎么监测,怎么预防它。如果说地震灾害很厉害,你怎么还而且到目前为止还不能很好地预测地震灾害,你怎么还因为地震有两个参数,时间和空间都不定。火山基本上有一个参数,就是它的空间基本能定,一般很少在一个没有一点关系的地方冒出火山来,所以它的空间位置大致能定,但是时间没法定,通过观测可以对火山的活动和爆发做出比较科学的准确预测。

(责任编辑:新基鼎定)

相关内容
最新内容
热点内容